INTRODUCTION

- Nitrogen (N) fertilizer rate, plant population, and hybrid selection are some of the most important decisions made by a farmer each year in the production of corn (Zea mays L.).
- These decisions interact with soil N status and plant N demand depending on the environmental conditions and the corn hybrid.
- Narrowing row spacing increases plant-to-plant spacing within the row, and is potentially a better arrangement to accommodate higher plant densities for most hybrids.
- Maximizing a hybrid's yield potential requires correct environmental placement and implementing the appropriate agronomic management.

YIELD RESPONSES TO MANAGEMENT

- Exceptional yields were obtained in the unfertilized (check) plots in 2017 at all locations, which led to less yield response to N fertilization than expected (Table 2).
- There was a wide range in yields amongst the 44 hybrids tested at each location in response to each N level (Table 2).
- Averaged across all hybrids and locations, the plant density increase from 79,000 to 94,000 plants ha⁻¹ contributed to the greatest yield response, while minimal yield was gained when increasing to 109,000 plants ha⁻¹.
- On average, the 51 cm row spacing was a better arrangement of the highest plant density (Table 2), although there was a high degree of variability among the hybrids (Figure 3).

HYBRID CHARACTERIZATION

- ‘Workhorse’ index (WHI) is based on the check plot yield (yield at 0 kg N ha⁻¹) and the yield response to low N (RTLowN; yield change between 0 and 67 kg N ha⁻¹).
- ‘Racehorse’ index (RHI) is comprised of the yield response to: high N (RTN; yield change between 0 and 280 kg N ha⁻¹ at 79,000 plants ha⁻¹), intermediate plant density (RTIntPop; yield change between 79,000 and 94,000 plants ha⁻¹ at 314 kg N ha⁻¹), high plant density (RTHiPop; yield change between 94,000 and 109,000 plants ha⁻¹ in a 76 cm row spacing), and row spacing (RTRS; yield change between 76 and 51 cm row spacing at 109,000 plants ha⁻¹) evaluations.
- Hybrids were ranked by their yield responses to each parameter and ‘Racehorse’ and ‘Workhorse’ indices for each hybrid were estimated using a multiple regression approach with the Smith-Hazel index.
- Index weights calculated for each parameter suggest that Check plot yield or RTN and RTRS were the most important in determining a hybrid's WHI or RHI, respectively (Table 3).
- Hybrids of similar yield potential with contrasting WHI and RHI suggest the potential for those hybrids to respond differently to N loss or intensified agronomic management (Table 4).

DATA MATERIALS AND METHODS

Hybrids: 68 commercial hybrids representing a broad germplasm spectrum and ranging in relative maturity from 104-120 days.

Locations: Yorkville (41°N), Champaign (40°N), and Harrisburg (39°N), Illinois.

Nitrogen: broadcast applied at the V₃ growth stage as urea (46-0-0) and protected with Limus.

Treatments: hybrids were evaluated across the two row spacings, three plant densities, and three N rates outlined in Table 1. Treatments were arranged in a split-split block experimental design with four replications.

Table 1. Six treatments used in the evaluation of commercial corn hybrids for their yield responses to N fertilization, plant density, and row spacing.

Table 2. Final grain yield as affected by nitrogen rate (79,000 plants ha⁻¹), plant density (at 314 kg N ha⁻¹ and 76 cm row spacing), and row spacing (at 109,000 plants ha⁻¹) at three locations in Illinois in 2017.

Table 3. Relative weights for each parameter used in the characterization of hybrids at three sites in Illinois in 2017.

Table 4. Ten hybrids ranked by their yield under standard management (314 kg N ha⁻¹ and 79,000 plants ha⁻¹) and their corresponding ‘Workhorse’ (WHI) and ‘Racehorse’ (RHI) indexes averaged across three sites in Illinois in 2017.

CONCLUSION

- Commercial corn hybrids differ drastically in their ability to tolerate low N environments and their responses to N fertilization, plant densities, and row spacing.
- Highest yields of 2017 were achieved with ‘Racehorse’ type hybrids at high densities in narrow rows.
- Narrow rows are a better arrangement of high densities for most hybrids.
- Typical variety testing trials under standard management do not accurately represent a hybrid’s yield stability across yield environments or responsiveness to intensive agronomic management.

Special thanks to Bayer CropScience, Nutrien Ag Solutions, Syngenta, and WinField United for supporting this research.